In-depth comparison of DeepSeek-OCR with other mainstream OCR solutions in key indicators such as accuracy, efficiency, deployment characteristics and cost
| 功能特性 | 🚀 DeepSeek-OCR (推荐) | 📊 GOT-OCR 2.0 | 📄 MinerU 2.0 | ⚡ PaddleOCR | 💬 ChatGPT |
|---|---|---|---|---|---|
| compare.accuracy | 97% | 98% | 95% | 90% | 85% |
| Token Consumption | 100/页 | 6000/页 | 6000+/页 | N/A | N/A |
| compare.compressionSupport | ✅ | ❌ | ❌ | ❌ | ❌ |
| 多语言Markdown | ✅ | ✅ | ✅ | ❌ | ✅ |
| compare.openSource | ✅ | ✅ | ✅ | ✅ | ❌ |
| compare.hardwareRequirements | 8GB+ GPU | 16GB+ GPU | 20GB+ GPU | CPU即可 | API调用 |
| compare.deploymentDifficulty | 中等 | 困难 | 困难 | 简单 | 简单 |
| compare.processingSpeed | 20万+页/天 | 5万页/天 | 2万页/天 | 1万页/天 | API限制 |
Suitable for processing academic papers containing mathematical formulas, outputting LaTeX format
Large-scale document processing, cost control is a key consideration
Quick validation of ideas, scenarios with low accuracy requirements